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We present multiresolution (MR) schemes for the efficient numerical solution of
the one-dimensional system of the reactive Euler equations, which has possibly stiff
source terms. The original version of the method was developed by A. Harten (1995,
Comm. Pure Appl. Math8(12), 1305) for homogeneous hyperbolic conservation
laws. By computing the cell average MR-representation of the solution, we obtain
much information about the solution’s regularity. This description of smoothness is
then used to reduce the number of direct flux computations as well as the expen-
sive high-order ENO (essentially nonoscillatory) reconstruction both of which are
now performed only near discontinuities. Thereby, the numerical solution procedure
becomes considerably more efficient. In the present case of the reactive Euler equa-
tions, the average efficiency factor measured by counting the number of actual flux
computations ranges from about 5 to 12. This is on the same order of, and in some
cases comes reasonably close to, actual speed-up factors obtained by code timings,
which were between 3 to 5. The MR overhead rate was about 10% for the ENO and
36% for TVD schemes, respectively. The quality of the solution is shown to be the
same as that of the finest grid. Detailed numerical and performance results are shown
for up to fourth-order accuracy, for source terms ranging from moderate to extremely
stiff.  © 1999 Academic Press

Key Wordsmultiresolution scheme; stiff source terms; essentially nonoscillatory
interpolation; conservation laws; reaction problems.

1. INTRODUCTION

Mathematical models of reactive gas flows couple the effects of non-reactive hydr
namics with those of heat release due to chemical reactions. In the case of inviscid
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the hydrodynamics is modeled by the usual Euler equations of gas dynamics. The chen
reactions may be modeled in different ways depending on the particular problem at h
and may involve many reacting species covering a wide range of reaction time scales.
simplest models involve a binary mixture of burnt and unburnt fuel. For these models
progress variable which measures the local mass fraction of unburnt fuel is introduce
addition to a single reaction rate equation. The reaction rate equation, in turn, introdu
a time scale to the problem which is often much faster than the usual hydrodynamic t
scale as determined by the local sound speed rendering the equations stiff. Rapid tem
changes in the flow quantities can provoke rapid spatial variations which appear in
solution as sharp reaction fronts and/or shock waves.

Solutions of the reactive Euler equations are often computed numerically and it i
difficult task to determine these solutions accurately. The main problem is due to the reac
rate term which is typically a sensitive function of temperature. This sensitivity require:
fine spatial and temporal grid (at least locally) in order to resolve the fast reaction sce
which is needed to obtain an accurate solution. Inadequate grid resolutions can lea
numerical errors which take the form of numerical oscillations and incorrect reaction frc
speeds, among others, and these errors have been reported in the literature for bot
reactive Euler equations (e.g., see [14]) and for reduced models (see, e.g., [13, 4]).

Solution adaptive techniques provide a useful tool for the reactive Euler equations, |
for stiff equations in general. In this paper, we propose a method based on finite-volul
multiresolution schemes as originally discussed by Harten in [8] for non-stiff problems. T
goal is to obtain a high-order numerical solution on a fine grid everywhere. This is achie
by employing multiresolution techniques to adaptively select regions where the full EN
fluxes are computed and interpolate from coarser grids in the rest of the domain. In this v
adequate numerical resolution is provided at a reduced computational cost. For exan
a decrease in the run time by a factor of 3 to 5 for the proposed method as compare
corresponding single-grid calculations is obtained for the test problems considered.

In what follows, we start by describing the governing equations, then we review the fini
volume high-order ENO scheme (Section 2). We then present two anomalies encount
by “naively” applying a well-tested finite volume scheme to the reactive Euler equatio
(Section 3). One is that of wrong reaction front speed, varying widly with time step, a
the second is a density “spike.” Neither of these problems is catastrophic in the sens
blow-up, or obvious spurious oscillations, making them all the more deceiving. The sim
fix is to add more grid cells. Alternatively, one can also raise the order of accuracy, c
combination thereof. Once we are convinced that very high resolution is indeed neces
for the solution to be of any practical value to the user, we may attempt to reduce the c
MR schemes do this by carefully choosing the regions where fluxes are actually compu
With minor adaptations, the original MR idea of [7], as generalized in [3], applies direct
to the present set of equations as well (Section 4). While we expect a certain computati
overhead along with a “programming overhead” when compared to the non-MR meth
we hope that both are outweighed by significant run-time savings. The numerical result
Section 5 provide ample evidence that this is indeed the case.

2. THE GENERAL FRAMEWORK

2.1. Governing Equations

We seek an approximate solution to the one-dimensional Euler equations of gas dyna
with a fourth equation added for the progress variableor completeness we include a full
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nomenclature here. Cast in conservative differential form, the equations to be solved :
qc +f(@x =h, (2.1a)
on(x,t) €[a, b] x (0, 00), [a, b] C R, with initial conditions
q(x, 0) = go(X). (2.1b)
Here
a=(e p, pu,pA)’
denotes the solution vector,
f=[(e+ p)u, pu, p+ pu?, pur]’
is the vector-valued flux function, and
h=10,0,0,pR]"

is the source term. As usual, p, u, estand for density, pressure, velocity, and total energ
respectively, with the ideal gas equation of state modified only for the heat release fron
reaction,

p=(-—-1 (e— %,ou2 + ﬂpk) (2.2a)

wherey is the ratio of specific heats aggds the heat release. The reaction rRtis defined
by

R=«(1— e F5, (2.2b)

wherex is the rate constant art is the activation energy.
This specific set of hyperbolic conservation laws is solved via a (by now) traditional fir
volume scheme, cast in semi-discrete form,

1 —
(v,-)tz—ﬁ(fj+%—fj_%)+hj =Sj(v), (2.3)
wherer is the time step, anfj 11,2 is the numerical flux, a function ofk variables,
fj+% :f(v?—K+1v~"’V?+K)’ (2.4)

obtained by solving a Riemann problem at the cell face betweenjcaltsl j + 1. Such a
numerical flux could come from an exact, or an approximate, but more efficient, “Riem:
solver.” Godunov’s method is an example of the former, and Roe’s linearized flux form
is an example of the latter, which is, in fact, what we utilize in all, except one, computati
of this study. In the abova,’j‘ is an approximation to the average of the exact solujiont)

in the cell D(jfl/z, Xj+]_/2], j =0,...,N—-1,

. 4
Vi R u(x, ty) dx, (2.5)

with t, =nt andh = % N being the number of (uniform) cells in the interval p].
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2.2. High-Order Reconstruction

In practice, evaluation of the numerical flux (2.4) amounts to pamnt valuesof the
solution’s cell average arrayimmediately to the left and to the right of the cell face being
used as inputs to the function, which in turn, generates the “Riemann flux” as output. |
spatial orders of accuracy higher than one it must be ensured that these solution point v
are indeed reconstructed to the desired order of accuracy—for first-order, direct substitu
ofthe cellaverage values suffices. Moreover, the question of choosing a method which av
or reduces interpolatory oscillations must be addressed. We wish to ensure as oscilla
free reconstruction as would be allowed by the order of accuracy required. So we select
that either decreases total variation (TVD) (e.g., [9]), introduces no new extrema (UN
as in [10], or results in any newly created extrema which are of the size of truncation el
(ENO) asfirstintroduced in [11]. In this paper, we limit ourselves to orders of accuracy t
through four, and therefore employ either a TVD or ENO reconstruction. The main reas
for using TVD instead of second-order ENO is the mainstream nature of TVD schemes
our desire to show the utility of MR schemes as possible upgrades to existing codes
already use TVD; of course, the two are in fact very close.

The TVD limiter we use is the simplest variant of the minmod function:

a, if |a] < |bl,ab> 0,
M (a, b) = minmoda, b) = < b, if |a| > |b],ab> 0O, (2.6)
0, if ab< 0.
This limiter is actually applied to the characteristic fields=L jvj, j'=j —1,j, j +1,

obtained by a diagonalization of the Jacobian matrix “locally frozen” At =R AL ~
% by right and left eigenvector matricé andL, respectively. The point values of the
characteristic variables are computed as

1
|
Wi 1 =W+ EM(A+Wj7 A_wj) (2.7a)
1
W?Jr% = Wj41 — EM(A+Wj+1a A_Wji1) (2.7b)

with the standard notatiof, z; = z; 1 — zj, A_z; = z; — zj_1, andM given by (2.6). The
reconstructed values obtained from (2.7) element by element are used to recover the sol
point values by computing

R
Vigs = RJWJ+%’ (2.8a)

Vi = Rj+1W;+%. (2.8b)

;
i+3
Our ENO formulation, while itensures the required high order of accuracy, is also the s
plest possible RPréconstruction byrimitive function) algorithm, as originally described
by Hartenet al.in [11]. As detailed above for TVD, the ENO reconstruction must also b
applied to the local characteristic variables and then transformed back to conservative
ables in order to avoid oscillations produced by possibly colliding discontinuities (detalil
justification and examples are given in [11]). In one dimension, the most straightforw:
ENO algorithm starts by setting up a Newton divided difference table for the primiti
function of each element,i =1, ..., 4, of conservative variable The entries in the dif-
ference table are denoted byfx;, ..., Xj«], k=1,...,r, wherer is the required order
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of accuracy. Each characteristic field has its own stencil, whose startingrimfdéxis first
initialized as

mi(j) = |. (2.9a)

By descending on the tree of derivatives of increasing orders, it hierarchically adds a
from the left or from the right of the current stencil to form the new, larger stencil ur
sufficient number of cells are gathered to yield a polynomial of the required order. -
decision at each step is based on the recursive comparison,

M =31 i Py X ]|
K+l _
me= < i (X - -0 Xyl |- (2.9b)
mi(j), otherwise

where the difference table for “locally” characteristic variable is obtained from the
precomputed table far, by multiplication with the left matrix_;.

Note that only part of the difference table is traversed this way, and it is certainly poss
to furnish pathological cases when the choices made in a hierarchical scheme of this
are non-optimal. However, based on our extensive numerical experimentation as we
that of others it seems clear that the quality of numerical results is already excellent,
it is shown to be of the required order of accuracy (see [10, 11]). Also note that the ste
build-up prescribed by (2.9b) is already very expensive since every comparison there
includes a conservative-to-characteristic transformation. Once the stencil is chosen, &
required derivatives are known as well, so the final reconstruction step is an evaluatic
the first derivative of a Taylor polynomial of the primitive function.

As can be seen from (2.9b), for atih order reconstruction, there are generaltifferent
stencils from which to choose. Near physical boundaries, however, the number of che
will decrease, and for a boundary cell there will be exactly one stencil. Depending on
physics of the problem, this may or may not be desirable, since it may resultin a downw
high-order stencil, which could potentially produce an instability. In our experience, pres
work included, one-sided high-order interpolation near the boundary is not an issue, e
for periodic boundaries or cases where strong shocks are reflected (in the latter case
cells should be constructed to allow sufficient choice, as alluded to in [11]). Altern
boundary ENO treatments typically include artificial reduction of order of accuracy n
the boundary or the use of ghost cells, both of which ultimately result in loss of accur
in the maximum norm.

Ontheissue of reconstruction and order of accuracy, it should also be noted that evalu
of the source term; in (2.3) is not, in general, a mere point-wise substitution of the ce
averagey; into the source function coming from (2.1a). Derivation of the conservation fol
(2.3) from the PDE (2.1) requirdyg to be evaluated as an integral, similar in nature to tt
form shown in (2.5). It so happens that in the first- and second-order cases treating th
average as a point value, i.e., assunting= h(v;), amounts to using the midpoint rule for
the quadrature. This is still second-order accurate in space and thus preserves the ¢
accuracy of the TVD scheme. On the other hand, higher order schemes require quadr:
of matching order and to this end we use Gaussian quadrature as it provides for minii
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number of evaluations, for a given order of accuracy:

n = {EJ 1 (2.10)

2

To reconstruct point values at the appropriate quadrature locations we used centra
“as-close-to-central-as-possible,” stencils. While the use of the ENO stencil, matching
one used in the convective part, seems appealing at first, numerical experimentation sl
that for the purpose of the integral evaluation, the central stencil is actually slightly bette
is more accurate, as expected, and oscillations do not appear above and beyond that \
the ENO treatment of the hyperbolic terms produce. The latter observation may be expla
by the fact that the Gaussian quadrature points and weights are symmetric, thus fortui
cancellations may help eliminate the effect of the Gibbs phenomenon.

2.3. Time Stepping

Besides ease of programming, the semi-discrete formulation (2.3) also offers an unc
pling of spatial and temporal discretizations which allows forindependent accuracy choic
For the temporal update we use either a second- or fourth-order Runge—Kutta scheme

1 1
Vit =V 578V,
(2.11)
v’j‘+1 =V 41§ (v”+%),
or
! 1
v'; f=vi+ érS,- "),
n+% /N 1 S I'H-;l1
Y _vj—i—ér,(v ), ( |
2.12
VARV, S (V)
j — 7 ) ’

1 1 2 s 1
Vit = 2 (—v‘j‘ FVTE T T 57S) (v”+73*)),

which will be referred to as RK2 and RK4, respectively.

3. INITIAL RESULTS AND MOTIVATION

Before describing the multiresolution scheme, we first present two sets of experime
with the goal of shedding some light on some of the underlying numerical issues introdu
by the reaction physics. The present authors feel that the choice of a numerical sch
should always be justified by its utility for the particular problem being solved, beyond
general theoretical or numerical appeal. In this context, we aim to justify the use of b
the ENO and the MR methods and thus set the stage for the method that combines t
two ideas.

For both of the example cases discussed here we use reflective BC at the left boun
and non-reflective BC at the right boundary. The boundary conditions are applied at
boundary face only and not in the reconstruction scheme, i.e., we do not duplicate or mi
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cells by way of ghost cells. At a boundary cell, the only way the ENO algorithm kno
about the existence of a boundary is by a limited choice of stencils there (more preci
exactly one, one-sided stencil).

3.1. A Stiff Test Case

For a full definition of the initial boundary-value problem (2.1) the initial conditions
t =0 remain to be specified. As suggested by Kapila [12], initial conditions (2.1b) for t
case are given by

p=1
u=2~0
’ A
=0 (3.1a)
T =1-ko|x— 22|,
wherew is a slope constant and temperatlires nondimensionalized as
TV P (3.1b)
y—1p

The rate model (2.2b) was slightly transformed via the substitutions xe/* andE —
L2 to arrive at

R=r(1— e (1-1), 3.2)

which now contains only only one parameter.

When applied to the inert Euler equations, the schemes described in Section 2
predictable results, with shocks and contact discontinuities in the correct locations
visible oscillations, and a noticeable improvement in discontinuity sharpness when the
of accuracy is increased. In fact, the second-order TVD scheme, subsequently called T
is convergent under the well-known CFL-condition of unity as shown by Harten in [9].

In the absence of source terms, the additional conservation equatjon ly itself
does not induce a qualitative change in the physics: the fourth eigenvalue of the Jac
A'is u, producing a second contact discontinuity with Riemann invarignts, and p.
The CFL-number is thus left unchanged. It is the source term in (2.1) that require
closer look, because its possibly violent growth puts a limit on the time step that cc
be orders of magnitude smaller than that coming from a CFL-condition. Still, one exp
a straightforward computation once the stiffness of the source term is translated ir
time step estimate. In order to do this, one might split off from the hyperbolic system :
solve the ODE irpA, and likewise, solve the remaining homogeneous hyperbolic syst
separetely as well. Namely, the ODE is solved with “frozen” flow variables. Such a splitt
is suggested and used in [13, 4] among others. If we apply the splitting for the sake o
estimate only, in the second-order case we arrive at two competing restrictions on the
step,

T < min( oh 2 > : (3.3)

max; (Ju;j| +¢;) " max; (|vj])
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whereo is the CFL-number chosen; andc; are the velocity and sound speed at jtie
cell, andv; is a measure of the source term when the latter is put in the form of the usi
ODE test equatioy’ = vy.

Of course, the above exercise in ODE stability analysis must include a linearization of
source termp R, Rdefined by (3.2), in the variabj@.. This is valid since the transcendental
function in (3.2) is analytic. The coefficientof the linear term is thus given by

_ Ke;(li){yﬂu—x) B 1]

j - kT2

L _ R
P800

s

i

with T and p defined by (3.1b) and (2.2a), respectively.

The first numerical experiment we conducted turned out to be a rather severe cas
terms of source stiffness. The constantandw for (3.1) and (3.2) were taken to be 0.06
and 0.1, respectively. The heat release paranfeteas set ag =2.8. The domaind, b]
was setbya=—1, b= 1, and initially we used = 128 computational cells. The solution
for small times is dominated by the reaction kinetics, which, once activated, operate at \
fast time scales. Initially, the temperature is slowly rising, and correspondingly fuel is bei
spent everywhere at a slow rate. Then, as the temperature increase becomes more
the fuel ignites at the left boundary, which initiates a reaction front moving to the rigt
Once formed, the front moves at a speed that is much faster than the wave speeds |
by u, u+c. The estimate (3.3) shortly transitions the time step to about three orders
magnitude smaller than that allowed by a reasonable CFL number, which in this first c
was taken to be a conservative 0.5. Ignore, for the moment, all curves on Figs. 1a—1d ex
the ones corresponding to tie= 128 case (double thickness solid lines). These profile
seem to indicate that the numerical solution is stable and looks reasonable, althoug!
certainly note the glitch in the density profile (Fig. 1b).

Short of an exact solution, first time experiments of this sort should be repeated on sev
grids of different densities, to determine adequacy of resolution and ultimately converget
The results att = 0.305 of six additional selected runs, part of this initial study, are depicte
in Figs. 1la—1d. At first, the dramatic difference in the reaction front locations between:
seven values ol may come as a surprise. In addition, the yet unexplained density “spik
mentioned earlier does not appreciably decrease in magnitude with a substantial incr
in resolution fromN = 64 to N = 256. At this point, it is difficult to say what the correct
solutionshouldbe, whether it converges as either or bothradindh — 0, and what the
trend is with respect to the spike which spreads across 2 or 3 cells. For the latter, |
clear that the sudden increase in density is unphysical and is ruled out as a possibly co
behavior.

Wrong reaction front locations have been reported by [13, 4] and others. In their syste
atic study of a simplified scalar model problem with polynomial source term, LeVeque a
Yee [13] come to the conclusion that a condition of obtaining the right front speed is that
producthy must be less than unity. In our case, the maximum attained valuewér all
its arguments is more than 25,000. To obey the condition suggested in [13], we would n
about 12,500 cells! Needless to say, this is an extremely severe limitation on the spatial n
size. When applied, it actually renders the second term in (3.3) unnecessary, since the
step based on the CFL-limit would already be smaller than that dictated by the source te

As we successively refine the grid by doubling the number of cells, we find that beyc
a certain grid spacing—which in this example turned out tdibe 256—the front location
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FIG. 1. Primitive variables at =0.305, usingN = 64, 96, 128 256, 512 1024 2048 (a) pressure, (b) den-
sity, (c) velocity, (d) progress variable.

indeed starts to converge, and simultaneously the density spike diminishes in magn
(Fig. 1). However, to reach a converged state for the front and to completely eliminate
glitch, we had to refine tdl = 2048, at which point we accepted the quality of the solutio
(see Fig. 2, a blow-up of Fig. 1b).

In order to gain a better understanding of the underlying phenomena, we continue
experiment with the same TVD2 scheme, but now holding the spatial resolution cons
and halving the time step instead. The glitch in the density profile remained about the <
size, but the front location became more accurate (Fig. 3). In addition, and as a validatic
our ENO scheme, we tried running using the same setup (same size of space and ten
mesh, with RK4 (2.12) for the time update), but changing the spatial reconstruction me
from TVD2 to ENO3 and ENO4. The results, focused on the critical region, are show
Fig. 4, and they clearly show a remarkable improvement, due to high spatial accurac
reducing the density spike. We conclude that the lag in the reaction front is due to temy
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FIG. 2. Close-up of Fig. 1b. Density &t= 0.305, usingN = 256, 512 1024 2048.
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FIG. 3. Close-up of density plot @t=0.305, usingN =256 ands = 0.5, 0.25, 0.125 0.0625.
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Density at t = 0.305
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FIG. 4. Close-up of density plot @t=0.305, usingN =512 and TVD2, ENO3, and ENO4 reconstruction.

errors, and the density spike is caused by spatial errors. Both can be remedied eith
adding spatial/temporal mesh points or by increasing the respective order of accuracy
There are many unanswered numerical issues worth exploring within the context of
source terms, both in terms of stability and accuracy, but which are outside of the scope ¢
paper. The goal of this example was merely to expose the crucial nature of grid resolu
resembling that of mesh Reynolds number stability limit on spatial step independent of 1
step, in the computation of viscous flows. Once the necessity to compute (at least loc
with extremely fine grids is established, one attempts to render such computations as eff
as possible, by adapting the mesh. In Section 4 we propose what be believe is a pot
alternative to traditional adaptive grid methods, and which has been used successfull
scalar 1-D hyperbolic (see [8, 6, 2]) and viscous conservation laws (see [1]), scalar
hyperbolic conservation laws (see [3]), and 1-D hyperbolic systems (see [5, 6, 8]).

3.2. A Test Case for ENO

While ENO schemes have been very successful in terms of the quality of the solu
they produce, their computational and programming cost has been a discouraging f
especially for multi-dimensional problems. Whenever used, however, ENO schemes
been successful particularly in capturing solutions with smooth, non-constant variat
between discontinuities, where the high order of accuracy indeed made a great differ
In order to illustrate such a high pay-off scenario, we borrow a problem from [14] and us
to test our scheme. The governing equations remain the same, with the original rate n
(2.2b) used withc =42 andE = 10, while the heat releageof (2.2a) is changed to 50.
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The initial conditions (3.1) are taken to be

p=1
u=0,
5 =0 (3.4)

_ 1
P = 1i3e Gna?

with the boundary conditions kept the same.

In preparation for the multiresolution scheme to be presented next, we benchmar
the third-order version of our ENO scheme (ENO3) against TVD2 on two different gri
which were a factor of 10 apart in mesh density. We compare TVD2 and ENO3, both w
N =200, to TVD2 withN = 2048, the latter being considered as the most accurate of t
three solutions.

While the governing equations are essentially the same as that of the previous exan
and the initial conditions are similar as well, this problem exhibits a much different,
many ways more benign, behavior. A gasdynamic shock actually has time to form he
with a smeared reaction front following behind. The energy released from the chemi
reaction continuously increases the pressure behind the shock, creating a smooth h
which eventually catches up with the shock to form a detonation wave. We have stop
the calculation at = 0.5, where the flow features are very complex and include smooth al
discontinuous elements. Accurate modeling of the reaction front and shock location an
strength is critical and is a challenging test for any scheme.

The results of Fig. 5 show a dramatic improvement in approximating the “super-fin
TVD2 solution when TVD?2 is replaced by ENO3. In particular, we note the large decree
in the size of the humps in all primitive variables and the large change in the reaction fr
location when the reconstruction accuracy is increased by one order. The shock loce
is also more accurate with ENO3, although not as pronounced as the other flow featt
The latter is due to the fact that the temporal accuracy of ENO3 is also higher than tha
TVD2, but since this problem is not stiff, the temporal error does not play as big of a role
approximating the shock speed as it did in approximating the front speed in Subsection
The large discrepancy in the smooth parts of the flow field are clearly due to the differel
in spatial accuracy.

While our ENO scheme is truly of arbitrarily high order of accuracy, in our previous ar
current experimentations we found that, with some exceptions, the highest gain in ove
accuracy is achieved by the step from second to third order. This was also true in the al
test problem, which will be revisited below and solved via a multiresolution ENO3 schen
On the other hand, in [14], Xet al. prefer and successfully use a fifth-order ENO scheme

4. THE MULTIRESOLUTION SCHEME

We now turn to present a variant of Harten’s multiresolution scheme [8]. In our descripti
of the method, we draw heavily on earlier work of Harten, as well as our own from [1-
The method that we refer to awultiresolution schemeas originally inspired by the strong
interest in wavelets seen in recent years (see [7]). In fact, both in terms of its origin anc
hierarchical nature, the types of multiresolution analysis first presented by Harten reser
wavelets and are indeed generalized (bi-orthogonal) forms of wavelets. As such multisi
decompositions of a function are very rich in regularity information, they proved to |



MULTIRESOLUTION SCHEMES 209

14.0

®
§
;
120 ¢ a'l;
;
© VD2, N=200 2 o TVD2, N=200 M
* ENO3, N=200 A 30 * ENO3, N=200 . o
1001 — TVD2,N=2048 —— TVD2, N-2048 ;

0.0

-10 -05 0.0 05 10 -10 -05 00 05 10
X X
(a) (b)
30 - 1.0 .
Fal
)
20 o TVD2, N=200 X 08 2 TVD2, N=200
* ENO3, N=200 * ENO3, N=200
— TVD2, N=2048 ° —— TVD2, N=2048
1.0 06
3 Bl
00 fy 04
-10 02
20 . . . 00 . .
-1.0 -05 0.0 05 1.0 -10 -05 00 05 10
X X
(c) (d)

FIG. 5. Primitive variables at =0.5, using TVD2 withN =200, ENO3 withN =200, and TVD2 with
N =2048; (a) pressure, (b) density, (c) velocity, (d) progress variable.

useful tools in adapting finite volume schemes to employ different reconstruction and
computation techniques at different locations. Multiresolution for cell averages is the nat
decomposition to use when the solution is described by its cell averages and consen
is essential, yet it is but one example of the interpolatory MR of [7].

4.1. Grid Hieararchy

Given a numerical solution at time leueby its cell average array® over a grid defined
by

0__ 0 No N
G = {Xj+%}j:0 - {Xj+%}j:o
we construct a set of nested, successively coarser grids by agglomeration of fine grid
into larger grid cells until we reach a state of maximal coarseness. In multiple dimens
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and for unstructured grids, this task by itself can become a challenging one. For our |
poses, however, we coarsify each grid level by simply discarding every other cell face
successively arrive at

GF = X, o = (XTiH (4.1)

j+1Jj=0,jeven

under the assumption that the number of céllson each levek is even; in all of our
numerical experimentsl = Ny was a power of 2. The grid spacing on each level is then

b—a
Ni

he =

with N, = N/2%. Although the method can be generalized to handle non-uniform grids,
arbitrary number of agglomerated cells and non-uniform agglomeration, 1-D applicatic
thus far have not necessitated such extensions.

4.2. Encoding

With the grids defined above, the cell average representation of the solution on e
coarser level becomes trivial: because of the additivity of the integrals and (2.5), the
proximate solution on level is represented by

n 1 lx?*%
Vi~ — u(x, ty) dx, (4.2)
hy xK
]

Nl

and therefore, given the approximate solution on the finest level, each coarser one wi
a simple average of its fine grid counterparts. A representatijoivalentto the fine grid
solution can be arrived at by storing, in addition to the above coarse grid cell averages
difference in information between the original fine grid solution and the one reconstruc
from values on the next coarser grid. The latter is interchangibly referred to as “multire:
lution coefficients,” “error,” or “regularity coefficients.” As shown in [8] for 1-D, and in [3]
for 2-D problems, these elements are proportional to gradients, or in their absence, ju
in gradients of the same order as the MR polynomial reconstruction, and that is the sol
of their utility in estimating regularity. This reconstruction is typically a central interpo
lation of the solution’s primitive function, except for boundaries, where we again opt f
one-sided, same-order interpolation, with information always coming from the interior
the domain. The entire process of obtaining an MR analysis

vy =Mv = @, d?, ..., d5vH)T (4.3)

is called theencoding In (4.3), M is a matrix (see, e.g., [7, 5]), but we use it here only tc
symbolize the procedure; tliés are the MR-coefficients arid is the number of grid levels
used. When each‘j( is a vector, as in the case of the equations of gas dynamics, (4.3)
interpreted component-wise. For all of the numerical examples presented below, we use
scalar algorithm presented in [2] for each conservative variable, with a slight modificati
to account for boundaries. At each grid lekek=1, 2, ..., L, we first compute the next
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coarser grid representation of the solution

1
Vi = > (V57 + V5 ). (4.4a)

and then the predicted values from these coarse values, along with the prediction errc

s—1
— Y S
Vor = Z VidViq
I=1-s
’ 1 (4.4b)
dJ - V2J - Vpr,

where j ranges from 0 toNk — 1. In (4.4b),r =2s—1 is the order of accuracy of the
interpolation for obtaining/, the predicted value of, and they;, are the coefficients
which, for most of the domain, are based on a central stencil. Near the boundaries
come from stencils shifted so they do not cross the boundary.

4.3. Decoding

The reverse process, tiecoding conveniently denoted byl ~1, converts the MR rep-
resentation into the cell average array on the finest level. Starting on the coarsest le\
works its way up to the finest one by reconstructing values on each consecutive finer
via the same interpolation as used by the encoding, and adding the corresponding
stored in thed's. That is, for eack, k=L, L — 1, ..., 1, we compute

s—1
Vpr = RV
pr = YilViu

I=1-s

vt = v +df (4.5)

k=1 _ ok _ (k-1
Vojr1 = 2Vj — Vy; .

4.4. Truncation

The encoding/decoding modules can be applied to any scalar or vector datain cell ave
form and can in fact be used to process data that are much more general in nature than
originating from conservation laws. The size of the MR representation can be reduce
eliminating the coefficients which are sufficiently small, thus obtaining a “data compressi
of the input. This procedure is termédincation but is sometimes also referred to as
thresholding. In absence of truncation, an encoding piped into a decoding yields a fine
data setidentical to the original one, otherwise there will be a difference; but this differe
has been shown to be bounded (see [8, 3]). Moreover, the bound can be controlle
changing the tolerance parameter of the truncation. We use a truncation-like proce
check for regularity, where a comparison against the tolerance value is used to set or
elements of a flag array. These cell-by-cell flags indicate whether the particular cell |
the “smooth” or “non-smooth” (high-gradient) region, and therefore provide a switch
the algorithm to employ different treatments in each. Customized for nonlinear hyperb
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conservation laws with discontinuities propagating with finite speeds, the procedure re
; k kK _
if (|dj| <e)thendf =0
else
'J 1 IJ’.J+1 1

(4.6)
if (Jd“| > 2ecandk > 1) theniftif ! = 1.

Here it is assumed that mmallﬁ 0 andeg = €, and thaky, = ek 1.

In the comparison oﬂk to the tolerance:, both of which are vector quantities, we
must be careful about the potentially different scales present among their elements.
took the conservative approach where we check each elemdfjﬁtsaiparately against an
appropriately scaled, and if any of the comparisons fail, we flag the cell. One can use
thel-norm of the regularity coefficients (as is done in [8, 5]), or any other norm, ar
compare against a scalarClearly, the choice of and the type of comparison is crucial
when it comes to accuracy and performance of the MR-scheme. The tolerance shoul
on the order of the truncation error on the fine level, because the goal is to provid
solution which is of the same quality as that on the finest grid. As for the comparison,
“exclusive” checking of each variable separately seems to be the safest, but it may nc
necessary everywhere. For the purposes of this paper, the guarantee that the algorithrr
not “miss” any irregularities was more important than marginal improvements in efficien
For a mature code, however—just as for most adaptive grid codes—the user should be
to supply a sensitivity variable chosen from a menu of available ones, whose behavic
then used in the decision on refinement.

4.5. Flux Computation

Once the flag arrayis set, we are ready to take advantage of the regularity informatic
by avoiding flux computations in smooth regions. Flux computations start on the coar:
level L:
jL . = f(vO). (4.7a)

N

We then proceed to compute on each finer grid level by looking ait}(theUnIike in
[8,5, 1, 2], where the fluxes were interpolatedpoint valuetn smooth regions, our current
scheme skips flux computations there altogether, and instead it interpolates the right |
side (denoted b in (2.3) and subsequently abbreviated as RESEell averagedt can
easily be shown thatin 1-D these two interpolations are equivalent. However, the latter of
a much greater generality in multiple dimensions (see [3]), as well as potential advante
when source terms are added. The algorithm to pre-compute the fluxes now follows
k=L,L—-1,...,1):

fAt =t
2i-3 = i3

k-1 0
if i _1thenf2]+1 = f(v").

(4.7b)

Note in (4.7b) the “copy” operation from coarse to fine at every other cell face, takir
advantage of fact that these faces coincide due to the particular agglomeration scheme
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flux f is computed according to (2.4), and its argument is the numerical sokftion the
finestlevel, providing a consistency between flux computations on different levels tha
ultimately necessary for stability. The boundaries are already taken care of in (4.7a) o
coarsest grid, where the indexing runs acrdsgst 1 cell faces.

4.6. Right Hand Side Computation

Once the fluxes are available where required, computation of the RHS starts, aga
the coarsest level, using the precomputed coarse-grid fluxes and adding the source te

1
L _ = L L 0
Sh=-p (f fjf%)Jrh(v ). (4.8)

With the coarse grid RHS in place, we successively compute each finer grid RHS by u
either the fluxes or interpolating from coarser levels:

if i = 1then
%l 1(k1_fkl)+h(V0)

T k-1 2]-&-1

St = =m0 — ) +he)

else

St =Y v S,
S§Ii1=25jk—s§fl-

The interpolation of the RHS in (4.8b) is done analogously to (4.5), with the assump
that in smooth regions the errdrcorresponding té is small so it would be truncated.
Since the interpolation is done in pairs, for one of them an additional small savings ca
realized by using the fact that the cell average on the coarse level is the arithmetic ave
of its two “children” on the next finer level.

The algorithm (4.8a—4.8b) is general enough to handle any type of source term, prov
that the bundling oh into the interpolation ois accurate wherever itis performed. In othe
words, we must make sure that the “smooth regions” obtained from algorithm (4.6) will ¢
be smooth when it comes to interpolation of the source term, otherwise error estimates «
sort given in [8] will not hold. To ensure this, we must modify the truncation procedure (4
to identify the smooth regions as those wheoththe fluxesandthe source terms contained
in Scan be interpolated. This may, and in the case of the stiff case presented in Subsecti
will, considerably increase the number of cells requiring exact computations, since w
the source term is orders of magnitude larger than the flux value, the errors introduc
the interpolation formula used in (4.8b) will be dominated by the former and will theref
contaminate the entire RHS. In our case the source term is actually scalar and is much
inexpensive to compute than the fluxes, so we chose to compute it everywhere on the
grid and to add it to the RH&fter (4.8) is executedvithout source terms. It should be
emphasized, however, that for non-stiff cases, and especially when source term evalu:
are expensive, (4.8) should be used as shown, instead of performing multiresolution anc
on the source terms separately (as in [5]). We will show one example of such a case be

(4.8b)
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FIG.6. TVD2 solution and MR diagram with IC (3.1) at ()= 0.3, (b)t =0.303, (c)t =0.305, (d)t =0.31,
(e)t =0.315, and (f}t =0.32.

5. NUMERICAL EXPERIMENTS

We present this collection of numerical results with the goal of demonstrating the perf
mance of the multiresolution method for this particular class of problems. We also hope
illuminate some of the issues involved in using the MR scheme for systems of hyperb
conservations laws with source terms.

In gauging the performance of an MR scheme, we typically use the following criteria,
decreasing order of importance:

(i) Quality. The MR solution should be of the same quality as that on the finest gri

(i) Preciseness. The MR scheme should be able to clearly identify the regions wh
real flux computations are needed (i.e., regions of refinement).

(iif) Speed-up. There should be a measurable speed-up in terms of actual code timi

Criteria (ii) and (iii) are obviously related, but in the case of scalar equations, for examg
where fluxes are inexpensive to compute, only the former criterion is meaningful. Ite
(i) depends only on the MR algorithm itself, whereas (iii) depends on the class of t
problem, programming styles, and computer architecture, yet it is also a rough measu
the overhead introduced by the MR modules.
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FIG. 6 —Continued

The “quality” of the MR solution is always compared to the corresponding non-MR ol
where it is implicitly assumed that the underlying finite volume scheme is basically cort
in approximating the true solution. In proposing the MR method for various problems,
claim that the quality is not compromised by the adaptive speedup. The errors are
defined as

ma
e 4<0§J§N0—1

e =1 1N§yv°’” w”\p%b =12 (5.1b)
PTAN [N i) ey, P=LA :

Vo —w|, b>, (5.1a)

where(., .) denotes the dot product, and the absolute value is interpreted element-wis
(5.1),w] isthe non-MR, fine grid cell average value at gedind time step andb = {bj i}
is a scale vector to ensure that the possibly large scale differences between the consel
variablesy = {v;}_; are taken into account. Tlog's are the inverse of the solution’s range
at each time step and are computed by

1

b — i 5.2
! MaXo<j <No-1(v]); — MiNo<j <no-1(v]); 2
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so that each conservative variable is projected back into the interval [0, 1]. The err
e, P=1, 2, 0o, become scalar quantities and are but one measure of deviatiowfrdra
chose these definitions to be backward compatible with the definitions used in [1-3, 6,
to which (5.1) would simplify when applied to those scalar problems.

The measure of “preciseness,” originally called #fficiency factoru in [8], can be
defined as the ratio of the number of fine grid flux computations to that of actual fl
computations performed by the MR scheme,

No

-0 (5.3)
NL + |Dnl

[
whereD, is the set of all fIagis}‘, set or cleared in (4.6), which are 1. In (5.3) we have take
into account the fact that fluxes on the coarsest grid are computed everywhere, accor
to (4.7a). The definition (5.3) of the efficiency works only in one dimension, whakso
equals thedata compressionf the solution at time step. In general, the efficiency is
obtained by actually counting the calls to the flux routine (see [3]).

Of course, both the quality and efficiency will strongly depend on the tolerande; }*_;
used in the truncation process (4.6). Itis a vector quantity, which is also appropriately sc:
by the same parametbrdefined in (5.2),

& = bier, (5.4)

wheree; is a reference quantity, indicating the maximum deviation inlth@orm from a
solution ranging over [0, 1], and introduced by truncation in one time step. We have u:
values which are of the same order as those of our earlier works on scalar problems [1
Although they seem to work well enough, as shown below, there is still much theoreti
work to be done on providing a quantitative formula on what this tolerance value shol
be, as well as on understanding the accumulation of errors in time as a functiom aur
experimentations we found that very small tolerance values produce low efficiency fact
but so do large tolerances too, since they first allow oscillations to develop which will,
turn, grow and propagate, thus eventually degrading the data compression. It appears
an “optimum’”e, exists in between. In principle, one may require théte on the order of
the globall; error from theexact solutionOnce a “good” tolerancey is found for a grid
resolutionNg that is fine enough to solve the problem accurately, for all other @tidén
the finest level) the following formula holds,

N r
€t =69<N—g) ’
f

wherer is the spatial order of accuracy. This recipe should be used in order of accurac
grid refinement studies.

For the “speed-up” we measure thetual run time that a case took with and without
MR, from start to finish, including input, initialization, time integration, output, etc. Th
ratio ¢ of the two numbers then tells us how many times the MR scheme is faster:

_run time without MR

. 5.5
run time with MR (5.5)

This is the time savings a user would in fact see and is therefore a quite realistic mea
of the efficiency gain that can be promised. Theoretically speaking, it may have bee
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more accurate approach to include timing routines between time steps and thus elim
the constant overhead associated with each run. To still provide some measure of the

we shall also include profiling results with percentage breakdowns of major code segm
We finally wish to mention that code optimization was minimal, both in terms of compi
flags and special programming tricks to boost efficiency, where we usually opted for cle
instead. The runs were performed on two architectures, an SGI INDY and a SUN Ultrasy
actual numbers shown will correspond to the former, but it was encouraging to see
speed-up ratios for the SUN were within 10% of those on the SGl, partially substantia
our claim that speed-ups quoted are machine independent.

5.1. The Very High Reaction Rate Example

We now return to the example of Subsection 3.1, where reaction model (3.2) wift06
was used together with IC (3.1). In terms of the more conventional model (2.2b)
corresponds to the activation energy of about 17 and a reaction rate of yea@i§ing an
extremely fast reaction time scale to emerge and then dominate the gas dynamics. \
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FIG. 7. MR performance for TVD2 with IC (3.1): (a) errors, (b) efficiency, and (c) execution profile.
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FIG.8. ENOS3 solution and MR diagram with IC (3.1) at ¢a 0.3, (b)t =0.303, (c)t = 0.305, (d)t =0.31,
(e)t =0.315, and (f}t =0.32.

the effect of the shallow slope af =0.1 is added, the result is a “slowly brewing” fluid
everywhere initially since the reaction is taking place in the entire domain at a low ra
Once the temperature rise triggers full ignition at the left boundary, the reaction front swe
across the domain from left to right at such a high speed that the fluid dynamics does
have time to catch up. There are no distinguishable shocks, expansions, or contacts ir
problem, only the reaction front which remains extremely sharp throughout.

As explained in some detail in Subsection 3.1, this problem requires an extremely f
grid to solve with an acceptable accuracy. The flow is unsteady, so at some point in tin
fine grid will be needed at any given location in the domain. To improve the efficiency, o
can resort only to an adaptive method of some sort. As such, the multiresolution met
seems to be an ideal candidate, given its built-in ability to detect discontinuities. When
scheme described in Section 4 is applied to system (2.1), we obtain the solutions depi
in Figs. 6, 8, and 10, where we took a snapshot of the solution at six different times
each run. The only difference between the runs is the order of accuracy. We chose a
of N =1024 for all cases, which seems to be fine enough to give a solution quality wh
is reasonable with TVD2 and good with higher order ENO. Each of the six snapshot:
each figure contains two primitive variables, pressure and density, plus a multiresolu
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diagram to show its performance. The MR diagram has a symbol at the cell centroid of ¢
cell whose multiresolution coefficients are larger than the tolerance, and tralsldien
cellsare flagged for “exact computations” by the truncation process (4.6). Note that tt
marks correspond directly to the arﬂafyof module (4.6); elements d)f set to 1 designate
the parentsof those cells that need to be computed via the traditional flux computation

5.1.1. TVD scheme.A detail examination of Fig. 6 reveals that the multiresolutiol
scheme for TVD2 performs as expected in terms of preciseness, in particular in being al
pick out and follow the reaction front reliably and accurately. Flagged cells are created a
left boundarybeforethe reaction wave forms (Fig. 6a), because of the large slope in den
(and velocity, not shown). An MR “spike” remains there for the rest of the computation.
the front forms and moves to the left, as early &s0.303 (Fig. 6b), we already see a cleav
age from the left spike, two levels deep. In time, this split between the two spikes widens
deepens, and lhy=0.31, it cuts across all levels. The location of the front is always precise
identified by the location of the second, very narrow MR spike which moves along with it.
a secondary feature, we note the development of a “shoulder” in the density profiles, w
are most clearly shown by the MR diagrams in Figs. 6¢c—6e, where we can clearly ident
3-level high, stationary spike several coarse grid cells in width. Finally, frer@.305 on we
note, albeit barely visible, oscillations on a very fine scale in the shoulder area of the del
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FIG.9. MR performance for ENO3 with IC (3.1): (a) errors, (b) efficiency, and (c) execution profile.

profiles. These tiny oscillations are caused by the MR interpolation, but they do not grow
preciably intime, and they are certainly within the MR tolerance, as shown by the diagrai

The tolerance level for this case was setat 0.006, and a histogram of the errors,
compared to the non-MR solution, shows that bothlthandl, errors are well below
this tolerance, which is rarely exceeded even bylthesrror (see Fig. 7a). It should be
emphasized that our theoretical “guarantee” in terms of quality extends only over c
stage of one time step. However, as we have seen in several earlier wetkis, dhosen
judiciously, the MR-error will grow sublinearly, suggesting that it is always less than tt
global error (compared to the exact solution), which is linear in time. Indagis practically
constant after about the first one-fourth of the run.

Once the correctness of the MR solution is established, the efficency histogram give
the second most important indicator of performance. As shown in Fige Fénges from 8
to 22, with an average value of 12.1 over about 900 time steps. When compared to prev
test cases, this is clearly an exceptional performance (see [1-3, 5, 6, 8]), partly due tc
nature of the problem which is very well suited for MR: (i) few, very sharp discontinuitie:
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(ii) a very fine grid is required. In addition to the snapshots of Fig. 6, Fig. 7b also shows
u stays around 8-9 for most of the front’s propagation through the domain. This plot is
most convincing when it comes to satisfaction of the “preciseness” criterion: the irregule
(i.e., front) does not change its width, and there are no new ones forming, thus we k
that after separation from the left boundarghould stay fairly constant.

When the code was timed with and without MR, the speed-up factame out to be
5.12. This is an impressive result, even if one considers that the efficiency was more
twice that, since there is a fixed amount of computation both in the MR and non-MR p
of the code (e.g., source terms are computed everywhere). We found it illuminating to
the percentage of time spent in six major parts of the code. The bar-chart of Fig. 7c st
that even with an average efficiency of 12.1, the single largest chunk of time is spent ir
(old) flux routines (“TVD fluxes”). The “MR fluxes” portion mainly corresponds to the RH:
interpolations in (4.8), and it contributes 16.9% to the total run time, whereas the shai
encoding and truncation (“fixed MR overhead”) is 18.9%, bringing the total MR portion
35.8%. Since no special reconstruction procedure was necessary for the source terms
calculation amounted to 9.1% only.

5.1.2. Third-order ENO schemeln Fig. 8 we provide a collection of snapshots fol
the ENO3 scheme with the MR adaptation, in the same format as Fig. 6. One of the
differences between the two solutions is the disappearance of the density spike fron
ENOS solution. Features also tend to be sharper, and the front is “ahead” of its T\
counterpart. Correspondingly, the MR diagrams in the ENO3 scheme are crisper
For example, the separation between the spikés-41.305 already spans four MR levels
(Fig. 8c), and, inthe same plot, the shoulder already appears. The shoulder is definitely
well-defined in the density profiles, but in terms of MR diagram also: the secondary s
goes all the way up to the second finest level and stays there for the whole run (Figs. 8c

An important difference between the TVD2 and ENO3 runs was the reduction of
tolerance:; to 0.0016, which was warranted by the higher spatial and temporal accurac
Since the underlying scheme is nhow more accurate than the second-order TVD sch
we should also expect it to be approximated by the MR scheme to a higher accurac
corresponding reduction i&y ande; is found when Fig. 9a is compared to Fig. 7a, while
€ is roughly the same. Qualitatively speaking, the errors behave a little better in term
tapering off in time, but overall they exhibit the same trend as for the TVD2 scheme.

The efficiency histogram of Fig. 9b again shows the high initial efficiencies due
smoothness, which drops off as the front develops and stays at around 7.5 as it propa
The average efficiency over more than 1000 time stepsis 11.23. The actual speed-up t
out to be¢ =3.5. While this result is still very pleasing, it is lower than the TVD2 case
even when the difference in the corresponding average efficiencies is taken into acc
The detailed code profile of Fig. 9c provides the answer. While the share of ENO
computations decreases by about 10%, the percentage of source term calculations
from 9.1% to 43.3%! As mentioned before, we chose to compute source terms everyw
exactly, since otherwise the truncation process (4.6) would have had to be altered, res
in lower efficiencies. For TVD?2 this posed little extra computation, since reconstruct
was trivial. Because of the explicit and extra number of evaluations (see (2.10)) require
higher order accuracy, this fixed extra cost increased considerably, adding to the tote
time. We wish to point out that the “MR fluxes” and “fixed MR overhead” categories &
about the same in absolute value between Fig. 7c and Fig. 9c, but their relative contribi
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FIG. 10. ENO4 solution and MR diagram with IC (3.1) at (&4=0.3, (b) t=0.303, (c)t=0.305,
(d)t=0.31, (e)t =0.315, and (f)t =0.32.

to the total run time is much smaller for ENO3, since the overall scheme is more expens
The total MR cost is thus only 9.4%, and when projected to the non-MR scheme it becor
a mere 2.7%. Yet the speed-up factor was less than a third of the efficiency.

5.1.3. Fourth-order ENO schemeWe ran the ENO4 scheme, not just to test a yet highe
order accurate scheme, but to examine the behavior of the MR interpolatiorswh&im
(4.4b) and (4.8b). Since we must preserve the overall accuracy of the spatial discretize
while we interpolate the RHS via (4.8b), the parametenust be chosen so that> r.
With ENO4,r becomes 5, and the MR stencil now spans 5 coarse grid cells. Typical
smooth parts will require fewer and discontinuities will require more flagged cells th
with r=3. As shown in Fig. 10, the solution itself is visually indistinguishable from th
ENOS solution, but the MR diagrams are noticeably different. The MR spikes are wider, ¢
the distinctive shoulder present in both the TVD2 and the ENOS3 solutions is now redut
to a wider flagged area near the left boundary, only from the third level on (Figs. 10c—1(
The explanation lies in the two orders higher interpolation accuracy which is now able
describe the shoulder at coarser levels.

The truncation tolerance was again reduced from the ENO3 value, newt6.0004,
reflected by thé; error shown in Fig. 11a. While all @&, &, ande,, are assymptotically
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converging to a constant value, the errors are larger than those for EN®&epted. This
is probably due to the higher order accurate encoding being truncated via a tolerance
that was only four times smaller.

Because of the smaller threshold tolerance and wider MR stencils near points of ir
ularities, we expect lower efficiencies as well. Figure 11b shows the histogram, where
average efficiency was=9.75, and the speed-up wgs=3.46. The ratio of these two
numbers is actually lower than in the ENO3 case, mainly because ENO4 is more expe
and the source term calculations are of about the same cost in both cases. Comparil
breakdowns shown in Figs. 9c and 11c we see that the balance between the “ENO flt
and “source terms” categories is now more favorable toward the former, otherwise the tr
are the same. The two MR categories take up a total of 10% of the run time.

5.2. Low Reaction Rate, Shocked Flow

In revisiting the non-stiff problem of Subsection 3.2 (with reaction model (2.2b) and
(3.4)) we examine the behavior of the MR algorithm for a problem where the grid finen
required is not as severe, but where the complex flow features present other challenge
ran this problem with the same parameter setup as we did earlier, except now using «
grid resolution ofN = Ng =512 and the MR algorithm of Section 4 with =0.00125.
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FIG. 11. MR performance for ENO4 with IC (3.1): (a) errors, (b) efficiency, and (c) execution profile.

All experiments in this subsection were conducted using the ENO3 reconstruction, whi
as seen in Subsection 3.2 above, seemed to yield a considerably higher quality that
TVD2 scheme. We hope to show that the added cost can be substantially mitigated by
multiresolution speed-up. The results that follow will also point out some of the issues t
adversely affect RHS interpolation in some cases.

5.2.1. Initial application of the MR schemeWhen we first applied the MR scheme to
the low reaction rate problem, &t 0.5 we obtained the pressure profile of Fig. 12a, whict
is comparable to that of Fig. 5a, run earlier. However, the corresponding MR diagrar
Fig. 12b is somewhat disappointing: on the second finest level the majority of the ce
behind the shock are flagged and all subsequent levels are totally dense. Keeping in |
that the actual MR coefficientbin (4.4b) come not from the primitive, but from the conser-
vative variables, we then plotted the energy (Fig. 12c¢). The many oscillations in the sma
expansion area are now obvious. This explains the strange MR diagram and the lower
expected efficiency factor of 2.94 there. Note that the shock is oscillation free, and the |
diagram is also correct in its neighborhood.
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5.2.2. Adifferent Riemann solverSince the non-MR solution did not contain these non:
fatal, yet bothersome oscillations, the multiresolution scheme was immediately susp
(Reverting to the lower order TVD2 scheme, with MR turned on, we obtained an enel
profile similar to that of Fig. 12c, so the higher order ENO was not the culprit either.) T
puzzle was finally solved by the realization that in Roe’s Riemann solver, rarefactions
modeled as “expansion shocks.” However small, these are discontinuities which, in rea
should be smooth transitions. Sonic glitches caused by Roe’s linearization are well kne
in the literature and are easily fixed by adding a small amount of dissipation, usually onl
the characteristic field that is zero. In this case, however, the entropy fix did not help eitl
What in fact happened was that the fluxes contained these tiny glitches in flagged c
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FIG. 13—Continued

and in others—in smooth areas—the RHS (and thus indirectly the flux) was interpola
In this case the latter source of fluxes was actually more accurate than the former, so-c
“actual” or “exact” fluxes. This inconsistency, we conjecture, is usually not noticeable
in the stiff case discussed earlier, and indeed, from the pressure plot of Fig. 12a one c:
tell either. In this case the multiresolution analysis, being so sensitive to oscillations, se
also as the indicator of a problem of its own causing. (Of course, one may also argue
even the energy profile of Fig. 12c is acceptable from a practical point of view, araf a
around 3 is also satisfactory.)

The ultimate test of this explanation is a replacement of Roe’s scheme with ano
Riemann solver. When the exact (nonlinear) Riemann solver (also called “Godun
Riemann solver” by some) was used, these oscillations indeed disappeared. Figu
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shows six snapshots of this solution, progress variable and MR diagrams included. Initi
the reaction front and the shock are two distinct features, which is well illustrated by t
separation on the finest level on both Figs. 13b and 13c. The front becomes smooth
time, and, except for the shock’s vicinity, all other finest level flagged cells disappear
t =0.4. A comparison of the MR diagrams on Figs. 13e and 12b (both=415) reveals

a noticeable improvement in efficiency from 2.94 to 4.16t At0.6, immediately before
the reaction wave coalesces with the shock, there are no significant MR coefficients or
two finest levels, except for the main discontinuity. Some of the marks in the MR diagr:
are simply due to steep (transient) gradients in the conservative variables, especially ir
energy profile (e.g., the left secondary MR-spike(s) in Figs. 13b—13e).

Satisfied with the solution we finally obtained, we are ready to discuss the MR perf
mance. Figure 14a shows that all the errors are on a moderate, seemingly linear gre
path. Even by the end of the run, bathande, are below the allowed tolerance value.
The behavior is markedly different from those shown in Figs. 7a, 9a, and 11a, due to
dynamics of the problem. This is also reflected by the efficiency histogram of Fig. 1
whereu is between about 4 and 7, with an average value of 5.15. The speed-up was 2
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FIG. 14. MR performance for ENO3 with IC (3.4): (a) errors, (b) efficiency, and (c) execution profile.



MULTIRESOLUTION SCHEMES 229

Breakdown of total run time

20 ¢

% of total run time

o

MR fluxes

)
o)
X
=2
0
Z
w

Fixed computations
Fixed MR overhead
Source terms
1/0, init, misc.

FIG. 15. Execution profile for ENO3 with IC (3.4) when source terms also undergo data compression.

These numbers are very encouraging considering the solution is complex, the grid is t
as coarse as the one used in Subsection 5.1, and source terms are still computed every
This latter fact is well illustrated in Fig. 14c, where source term computations take uj
much as 34.3% of the run time.

5.2.3. Source term computation via multiresolutioklp to now, we had two reasons
for computing source terms on the finest grid and without MR: (i) for TVD2 this w:
inexpensive; (ii) when the source terms are stiff, the truncation process must be mod
accordingly. For the second case studied in this paper, however, neither of these motive
are applicable, and it would indeed be interesting to compare the two different approac
holding all other run parameters fixed. We expect no quantitative change in the solt
when (4.8) is applied in its original form.

The run held no surprises: on the average, the errors were about 5-10% less than
shown in Fig. 14a, and the efficiencies were also very close to those of Fig. 14b, yie
an averageu of 5.19 (instead of the previous 5.15). The improvement in the run tirr
however, was significant: the new run finished about 32% sooner, bringing the spee
to 3.73 (from 2.54)! The ratio of the efficiency versus speed-up was thus the lowest o
numerical experiments, which suggests that in such gasas actually be used as a rougt
a priori estimator of the actual MR run time. The bar-chart in Fig. 15 shows a distribut
where source computations are brought down to 9%, and the total MR cost is 12%. S
the share of MR routines always goes up with the efficiency, it is interesting to also pro
the MR time onto the original run time to gefaindependent estimate; in this case the MF
cost is 3.22% of the fine grid run time. Even considering the fact that the exact Riem
solver is more expensive than Roe’s, these results are very promising.

6. CONCLUDING REMARKS

We have studied the application of the multiresolution method to conservation laws \
source terms. After the use of the powerful ENO and MR techniques was briefly justif
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we presented a scheme that combines these two ideas in a unified form that allows
a natural and efficient MR treatment of source terms. When the proposed scheme
applied to two particular cases, results have shown that on the average the actual sj
up ranges from about one-third to two-thirds of the efficiency factor, where the latter w
between 5 and 12. The total run time was thus reduced by 3 to 5 times. The overhead
to MR routines was typically about 10% for ENO, and about 36% for TVD. While mor
research into some of the detail issues is necessary, this one-dimensional application c
multiresolution scheme to the reactive Euler equations has shown a particularly clos
between the method and the physics.

On the natural question of how the method would fare in two or three dimensions w
complex geometry, it is important to point out that the performance will likely be highl
problem dependent. For unstructured grids, the MR interpolation would have to be a |
order, multi-dimensional, central interpolation of the cell averages, whereas in the structt
grid case the tensor product approach would suffice. In the latter case, the scalar results
[3] are especially encouraging. In both cases, however, whenever high order ENO is justi
by the problem at hand, we feel that the multiresolution method could significantly redt
the run time. In smooth regions the fixed-stencil MR interpolation would not only repla
the flux computations which includes multiple quadrature points and Riemann solvers
each face, but would also bypass the ENO stencil selection which can be prohibitiv
expensive in multiple dimensions.
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